Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Journal
Document Type
Year range
1.
Sensors (Basel) ; 22(2)2022 Jan 17.
Article in English | MEDLINE | ID: covidwho-1634825

ABSTRACT

Future social networks will rely heavily on sensing data collected from users' mobile and wearable devices. A crucial component of such sensing will be the full or partial access to user's location data, in order to enable various location-based and proximity-detection-based services. A timely example of such applications is the digital contact tracing in the context of infectious-disease control and management. Other proximity-detection-based applications include social networking, finding nearby friends, optimized shopping, or finding fast a point-of-interest in a commuting hall. Location information can enable a myriad of new services, among which we have proximity-detection services. Addressing efficiently the location privacy threats remains a major challenge in proximity-detection architectures. In this paper, we propose a location-perturbation mechanism in multi-floor buildings which highly protects the user location, while preserving very good proximity-detection capabilities. The proposed mechanism relies on the assumption that the users have full control of their location information and are able to get some floor-map information when entering a building of interest from a remote service provider. In addition, we assume that the devices own the functionality to adjust to the desired level of accuracy at which the users disclose their location to the service provider. Detailed simulation-based results are provided, based on multi-floor building scenarios with hotspot regions, and the tradeoff between privacy and utility is thoroughly investigated.


Subject(s)
Mobile Applications , Privacy , Contact Tracing , Social Networking
2.
Data ; 5(4):87, 2020.
Article | MDPI | ID: covidwho-784013

ABSTRACT

Some of the recent developments in data science for worldwide disease control have involved research of large-scale feasibility and usefulness of digital contact tracing, user location tracking, and proximity detection on users’mobile devices or wearables. A centralized solution relying on collecting and storing user traces and location information on a central server can provide more accurate and timely actions than a decentralized solution in combating viral outbreaks, such as COVID-19. However, centralized solutions are more prone to privacy breaches and privacy attacks by malevolent third parties than decentralized solutions, storing the information in a distributed manner among wireless networks. Thus, it is of timely relevance to identify and summarize the existing privacy-preserving solutions, focusing on decentralized methods, and analyzing them in the context of mobile device-based localization and tracking, contact tracing, and proximity detection. Wearables and other mobile Internet of Things devices are of particular interest in our study, as not only privacy, but also energy-efficiency, targets are becoming more and more critical to the end-users. This paper provides a comprehensive survey of user location-tracking, proximity-detection, and digital contact-tracing solutions in the literature from the past two decades, analyses their advantages and drawbacks concerning centralized and decentralized solutions, and presents the authors’thoughts on future research directions in this timely research field.

SELECTION OF CITATIONS
SEARCH DETAIL